题目内容
【题目】已知A(﹣4,2),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=图象的两个交点.
(1)求反比例函数和一次函数的表达式;
(2)将一次函数y=kx+b的图象沿y轴向上平移n个单位长度,交y轴于点C,若S△ABC=12,求n的值.
【答案】(1)y=-,y=﹣x﹣2;(2)4
【解析】
(1)把A的坐标代入反比例函数的解析式即可求出反比例函数的解析式,把A、B的坐标代入一次函数的解析式得出方程组,求出方程组的解即可得出一次函数的解析式;
(2)求出直线与y轴的交点坐标,关键三角形的面积公式求出△ACD和△BCD的面积,即可得出答案.
(1)把A(﹣4,2),B(2,﹣4)分别代入y=kx+b和中,,2,解得:k=﹣1,b=﹣2,m=﹣8,即反比例函数的表达式为,一次函数的表达式为y=﹣x﹣2;
(2)设一次函数y=﹣x﹣2的图象与y轴的交点为D,则D(0,﹣2).
∵S△ABC=12,∴,∴CD=4,∴n=4.
【题目】某童装专卖店,为了吸引顾客,在“六一”儿童节当天举办了甲、乙两种品牌童装有奖酬宾活动,凡购物满100元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同.摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少(如表).
(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;
(2)如果一个顾客当天在本店购物满100元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的童装?并说明理由.
甲种品牌童装 | 球 | 两红 | 一红一白 | 两白 |
礼金券(元) | 15 | 30 | 15 | |
乙种品牌童装 | 球 | 两红 | 一红一白 | 两白 |
礼金券(元) | 30 | 15 | 30 |
【题目】运动员将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度h(m)与它的飞行时间t(s)满足二次函数关系,t与h的几组对应值如下表所示.
t(s) | 0 | 0.5 | 1 | 1.5 | 2 | … |
h(m) | 0 | 8.75 | 15 | 18.75 | 20 | … |
(1)求h与t之间的函数关系式(不要求写t的取值范围);
(2)求小球飞行3s时的高度;
(3)问:小球的飞行高度能否达到22m?请说明理由.
【题目】已知二次函数的解析式是y=x2﹣2x﹣3.
(1)与y轴的交点坐标是 ,顶点坐标是 .
(2)在坐标系中利用描点法画出此抛物线;
x | … | … | |||||
y | … | … |
(3)结合图象回答:当﹣2<x<2时,函数值y的取值范围是 .