题目内容

矩形纸片ABCD中,AB=5,AD=4.
(1)如图1,四边形MNEF是在矩形纸片ABCD中裁剪出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由;

(2)请用矩形纸片ABCD剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).

解:(1)正方形的最大面积是16。理由如下:设AM=x(0≤x≤4),则MD=4﹣x。
∵四边形MNEF是正方形,∴MN=MF,∠AMN+∠FMD=90°。
∵∠AMN+∠ANM=90°,∴∠ANM=∠FMD。
∵在△ANM和△DMF中,,∴△ANM≌△DMF(AAS)。∴DM=AN。

∵函数的开口向上,对称轴是x=2,
∴在对称轴的左侧S随x的增大而减小,在对称轴的右侧S随x的增大而增大。
∵0≤x≤4,∴当x=0或x=4时,正方形MNEF的面积最大,最大值是16。
(2)先将矩形纸片ABCD分割成4个全等的直角三角形和两个矩形如图1,然后拼成如图2的正方形。

解析试题分析:(1)设AM=x(0≤x≤4)则MD=4﹣x,根据正方形的性质就可以得出Rt△ANM≌Rt△DMF.根据正方形的面积就可以表示出解析式,由二次函数的性质就可以求出其最值。
(2)先将矩形纸片分割成4个全等的直角三角形和两个矩形如图,根据赵爽弦图的构图方法就可以拼成正方形。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网