题目内容
【题目】如图,将带有45°和30°两块直角三角尺的直角顶点C叠放在一起,
(1)若∠DCE=25°,则∠ACB=______;若∠ACB=150°,则∠DCE=______;
(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由.
【答案】(1)155°;30°;(2)∠ACB+∠DCE=180°,理由见解析.
【解析】
(1)由∠ACD=90°,∠DCE=25°,得出∠ACE=65°,求出∠ACB=∠ACE+∠BCE=155°;若∠ACB=150°,由∠ACD=∠BCE=90°,得出∠DCE=180°﹣150°=30°;
(2)由∠ACD=∠BCE=90°,得出∠ACE+∠DCE+∠DCE+∠BCD=180°,结合已知条件,即可得出结论.
(1)∵∠ACD=90°,∠DCE=25°,
∴∠ACE=90°﹣25°=65°,
∵∠BCE=90°,
∴∠ACB=∠ACE+∠BCE=65°+90°=155°;
故答案为:155°
∵∠ACB=150°,∠ACD=∠BCE=90°,
∴∠DCE=90°+90°﹣∠ACB=180°﹣150°=30°;
故答案为:30°
(2)∠ACB+∠DCE=180°.理由如下:
∵∠ACD=∠BCE=90°,
∴∠ACE+∠DCE+∠DCE+∠BCD=180°,
∵∠ACE+∠DCE+∠BCD=∠ACB,
∴∠ACB+∠DCE=180°.
练习册系列答案
相关题目