题目内容
【题目】(1)如图 1 所示,△ ABC 和△ AEF 为等边三角形,点 E 在△ ABC 内部,且 E 到点 A、B、C 的距离分别为 3、4、5,求∠AEB 的度数.
(2)如图 2,在△ ABC 中,∠CAB=90°,AB=AC,M、N 为 BC 上的两点,且∠MAN=45°,MN2 与 NC2+BM2 有何关系?说明理由.
【答案】(1)150°;(2)MN2=NC2+BM2.
【解析】
(1)根据等边三角形的性质和全等三角形的判定可知CF=BE=4,∠AEB=∠AFC,再由勾股定理的逆定理可知∠CFE=90°,从而可求出∠AEB;
(2)根据旋转的性质和全等三角形的判定可知CF=BM 、MN=FN,由题意可证∠FCN=90°,进而可证明MN2=NC2+BM2.
解:(1)连接 FC,如图1所示:
∵△ABC 和△ AEF 为等边三角形,
∴AE=AF=EF=3,AB=AC,∠AFE=60°,∠BAC=∠EAF=60°,
∴∠BAE=∠CAF=60°﹣∠CAE,
在△ BAE 和△ CAF 中,
∴△BAE≌△CAF(SAS),
∴CF=BE=4,∠AEB=∠AFC,
又∵EF=3,CE=5,
∴CE2=EF2+CF2,
∴∠CFE=90°,
∵∠AFE=60°,
∴∠AFC=90°+60°=150°,
∴∠AEB=∠AFC=150°;
(2)MN2=NC2+BM2,理由如下:
将△ ABM 绕 A 点逆时针旋转 90°,得到△ AFC,如图 2 所示: 则 AM=AF,CF=BM,∠BAM=∠CAF,∠B=∠ACF,
∵∠BAC=90°,∠MAN=45°,
∴∠NAF=∠CAN+∠FAC=∠CAN+∠BAM=90°﹣45°=45°=∠MAN,
在△ MAN 和△ FAN 中,
∴△MAN≌△FAN(SAS),
∴MN=FN,
∵∠BAC=90°,AB=AC,
∴∠B=∠ACB=45°,
∵∠B=∠ACF,
∴∠ACF=45°,
∴∠FCN=90°,
由勾股定理得:NF2=CF2+CN2,
∵CF=BM,NF=MN,
∴MN2=NC2+BM2.
【题目】某商场柜台销售每台进价分别为160元、120元的、两种型号的电器,下表是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
种型号 | 种型号 | ||
第一周 | 3台 | 4台 | 1200元 |
第二周 | 5台 | 6台 | 1900元 |
(进价、售价均保持不变,利润=销售收入—进货成本)
(1)求、两种型号的电器的销售单价;
(2)若商场准备用不多于7500元的金额再采购这两种型号的电器共50台,求种型号的电器最多能采购多少台?
(3)在(2)中商场用不多于7500元采购这两种型号的电器共50台的条件下,商场销售完这50台电器能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.