题目内容

【题目】某校奖励学生,初一获奖学生中,有一人获奖品3件,其余每人获奖品7件;初二获奖学生中,有一人获奖品4件,其余每人获奖品9件.如果两个年级获奖人数不等,但奖品数目相等,且每个年级奖品数大于50而不超过100,那么两个年级获奖学生共有_____人.

【答案】25

【解析】

分别设两个年级的人数为未知数,可得到每个年级奖品的总数目,让其相等可得两个未知数的关系.关系式为:50<每个年级的奖品数≤100,把相关数值代入求得适合的整数解,相加即可.

设初一获奖人数为n+1人,初二获奖人数为m+1人(n≠m).依题意有

3+7n=4+9m,即7n=9m+1

由于503+7n≤100504+9m≤100.得

n≤m≤

n=78910111213m=678910

但满足①式的解为唯一解:n=13m=10

n+1=14m+1=11

∴获奖人数共有14+11=25(人).

故答案为25

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网