题目内容

【题目】如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DEAB,垂足为E,DE的延长线交此圆于点F.BGAD,垂足为G,BGDE于点H,DC,FB的延长线交于点P,且PC=PB.

(1)求证:BGCD;

(2)设△ABC外接圆的圆心为O,若AB=DH,OHD=80°,求∠BDE的大小.

【答案】(1)证明见解析;(2)20°或40°.

【解析】

(1)根据等边对等角得:∠PCB=∠PBC,由四点共圆的性质得:∠BAD+∠BCD=180°,从而得:∠BFD=∠PCB=∠PBC,根据平行线的判定得:BC∥DF,可得∠ABC=90°,AC是⊙O的直径,从而得:∠ADC=∠AGB=90°,根据同位角相等可得结论;

(2)先证明四边形BCDH是平行四边形,得BC=DH,根据特殊的三角函数值得:∠ACB=60°,∠BAC=30°,所以DH=AC,分两种情况:

①当点ODE的左侧时,如图2,作辅助线,构建直角三角形,由同弧所对的圆周角相等和互余的性质得:∠AMD=∠ABD,则∠ADM=∠BDE,并由DH=OD,可得结论;

②当点ODE的右侧时,如图3,同理作辅助线,同理有∠ADE=∠BDN=20°,∠ODH=20°,得结论.

(1)证明:如图1,

PC=PB,

∴∠PCB=PBC,

∵四边形ABCD内接于圆,

∴∠BAD+BCD=180°,

∵∠BCD+PCB=180°,

∴∠BAD=PCB,

∵∠BAD=BFD,

∴∠BFD=PCB=PBC,

BCDF,

DEAB,

∴∠DEB=90°,

∴∠ABC=90°,

AC是⊙O的直径,

∴∠ADC=90°,

BGAD,

∴∠AGB=90°,

∴∠ADC=AGB,

BGCD;

(2)由(1)得:BCDF,BGCD,

∴四边形BCDH是平行四边形,

BC=DH,

RtABC中,∵AB=DH,

tanACB=

∴∠ACB=60°,BAC=30°,

∴∠ADB=60°BC=AC,

DH=AC,

①当点ODE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,

∴∠AMD+ADM=90°

DEAB,

∴∠BED=90°,

∴∠BDE+ABD=90°,

∵∠AMD=ABD,

∴∠ADM=BDE,

DH=AC,

DH=OD,

∴∠DOH=OHD=80°,

∴∠ODH=20°

∵∠AOB=60°,

∴∠ADM+BDE=40°,

∴∠BDE=ADM=20°,

②当点ODE的右侧时,如图3,作直径DN,连接BN,

由①得:∠ADE=BDN=20°,ODH=20°,

∴∠BDE=BDN+ODH=40°,

综上所述,∠BDE的度数为20°40°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网