题目内容

【题目】如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°,将有一30度角的直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(图中∠OMN=30°,∠NOM=90°)
(1)将图1中的三角板绕点O逆时针旋转至图2,使OM在∠BOC的内部,且恰好平分∠BOC,问直线ON是否平分∠AOC?请说明理由;
(2)将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,求t;
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.

【答案】
(1)解:直线ON平分∠AOC;

理由:

设ON的反向延长线为OD,

∵OM平分∠BOC,

∴∠MOC=∠MOB=60°,

又∵OM⊥ON,

∴∠MON=90°,

∴∠BON=30°,

∴∠CON=120°+30°=150°,

∴∠COD=30°,

∴OD平分∠AOC,

即直线ON平分∠AOC


(2)解:由(1)可知∠BON=30°,∠DON=180°

因此ON旋转60°或240°时直线ON平分∠AOC,

由题意得,6t=60°或240°,

∴t=10或40


(3)解:∵∠MON=90°,∠AOC=60°,

∴∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,

∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°


【解析】(1)由角的平分线的定义和等角的余角相等求解;(2)由∠BOC=120°可得∠AOC=60°,则∠AON=30°或∠NOR=30°,即顺时针旋转300°或120°时ON平分∠AOC,据此求解;(3)因为∠MON=90°,∠AOC=60°,所以∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,然后作差即可.
【考点精析】掌握角的平分线和余角和补角的特征是解答本题的根本,需要知道从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线;互余、互补是指两个角的数量关系,与两个角的位置无关.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网