题目内容

如图,Rt△ABC中,∠C=90°,有三个正方形CDEF、DGHK、GRPQ,它们分别是△ACB、△EDB和△HGB的内接正方形,EF=10cm,HK=7cm,则第三个正方形的边长PQ的长(  )
分析:先由相似三角形的判定可得△QPH∽△KHE,再由相似三角形的性质可得QP:KH=QH:KE,然后将已知条件代入,即可求得PQ的长度.
解答:解:∵PQ∥HK,∴∠QPH=∠KHE,
又∵∠PQH=∠HKE=90°,
∴△QPH∽△KHE,
∴QP:KH=QH:KE,
设正方形GRPQ的边长为xcm.
又∵正方形CDEF的边长为10cm,正方形DGHK的边长为7cm,
∴x:7=(7-x):3,
解得x=4.9.
故选D.
点评:本题考查了相似三角形的判定及性质,正方形的性质,得到△QPH∽△KHE是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网