题目内容
【题目】已知:如图,在△ABC中,AB=AC,点D、E分别在边BC、DC上,AB2 =BE · DC ,DE:EC=3:1 ,F是边AC上的一点,DF与AE交于点G.
(1)找出图中与△ACD相似的三角形,并说明理由;
(2)当DF平分∠ADC时,求DG:DF的值;
(3)如图,当∠BAC=90°,且DF⊥AE时,求DG:DF的值.
【答案】(1)△ABE、△ADC,理由见解析;(2);(3)
【解析】
(1)根据相似三角形的判定方法,即可找出与△ACD相似的三角形;
(2)由相似三角形的性质,得,由DE=3CE,先求出AD的长度,然后计算得到;
(3)由等腰直角三角形的性质,得到∠DAG=∠ADF=45°,然后证明△ADE∽△DFA,得到,求出DF的长度,即可得到.
解:(1)与△ACD相似的三角形有:△ABE、△ADC,理由如下:
∵AB2 =BE · DC ,
∴.
∵AB=AC,
∴∠B=∠C,,
∴△ABE∽△DCA.
∴∠AED=∠DAC.
∵∠AED=∠C+∠EAC,∠DAC=∠DAE+∠EAC,
∴∠DAE=∠C.
∴△ADE∽△CDA .
(2)∵△ADE∽△CDA,DF平分∠ADC,
∴,
设CE=a,则DE=3CE=3a,CD=4a,
∴ ,解得(负值已舍)
∴;
(3)∵∠BAC=90°,AB=AC,
∴∠B=∠C=45° ,
∴∠DAE=∠C=45°,
∵DG⊥AE,
∴∠DAG=∠ADF=45°,
∴AG=DG=,
∴,
∵∠AED=∠DAC ,
∴△ADE∽△DFA,
∴,
∴,
∴.
【题目】为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示,请根据图表信息解答下列问题:
组别 | 分数段(分) | 频数 |
A组 | 60≤x<70 | 30 |
B组 | 70≤x<80 | 90 |
C组 | 80≤x<90 | m |
D组 | 90≤x<100 | 60 |
(1)本次调查的总人数为 人.
(2)补全频数分布直方图;
(3)若A组学生的平均分是65分,B组学生的平均分是75分,C组学生的平均分是85分,D出学生的平均分是95分,请你估计参加本次测试的同学们平均成绩是多少分?