题目内容
【题目】给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题: ①直线y=0是抛物线y= x2的切线;
②直线x=﹣2与抛物线y= x2 相切于点(﹣2,1);
③若直线y=x+b与抛物线y= x2相切,则相切于点(2,1);
④若直线y=kx﹣2与抛物线y= x2相切,则实数k= .
其中正确命题的是( )
A.①②④
B.①③
C.②③
D.①③④
【答案】B
【解析】解:①∵直线y=0是x轴,抛物线y= x2的顶点在x轴上,∴直线y=0是抛物线y= x2的切线,故本小题正确; ②∵抛物线y= x2的顶点在x轴上,开口向上,直线x=﹣2与y轴平行,∴直线x=﹣2与抛物线y= x2 相交,故本小题错误;
③∵直线y=x+b与抛物线y= x2相切,∴ x2﹣x﹣b=0,∴△=(﹣1)2﹣4× b=1+b=0,解得b=﹣1.把b=﹣1代入 x2﹣x﹣b=0得x=2,把x=2代入抛物线解析式可知y=1,∴直线y=x+b与抛物线y= x2相切,则相切于点(2,1),故本小题正确;
④∵直线y=kx﹣2与抛物线y= x2 相切,∴ x2=kx﹣2,即 x2﹣kx+2=0,△=k2﹣2=0,解得k=± ,故本小题错误.
故选B.
【考点精析】本题主要考查了求根公式和二次函数的性质的相关知识点,需要掌握根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.