题目内容
【题目】如图,矩形纸片ABCD中,已知AD=12,AB=9,E是BC上的点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为_____.
【答案】或9
【解析】
当△CEF为直角三角形时,有两种情况:①当点F落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=15,根据折叠的性质得∠AFE=∠B=90°,而当△CEF为直角三角形时,只能得到∠EFC=90°,所以点 A、F、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点F处,则EB=EF,AB=AF=9,可计算出CF=6,设BE=x,则EF=x,CE=12-x,然后在Rt△CEF中运用勾股定理可计算出x.②当点F落在AD边上时,如图2所示.此时四边形ABEF为正方形,易得BE.
解:当△CEF为直角三角形时,有两种情况:
①当点F落在矩形内部时,如图1所示.
连结AC,
在Rt△ABC中,AB=9,BC=12,
∴AC==15,
∵∠B沿AE折叠,使点B落在点F处,
∴∠AFE=∠B=90°,
当△CEF为直角三角形时,只能得到∠EFC=90°,
∴点A、F、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点F处,如图,
∴EB=EF,AB=AF=9,
∴CF=15-9=6,
设BE=x,则EF=x,CE=12-x,
在Rt△CEF中,
∵EF2+CF2=CE2,
∴x2+62=(12-x)2,
解得x=,
∴BE=;
②当点F落在AD边上时,如图2所示.
此时ABEF为正方形,
∴BE=AB=9.
综上所述,BE的长为或9.
故答案为或9.
练习册系列答案
相关题目