题目内容
如图,在平面直角坐标系中,已知抛物线交轴于两点,交轴于点.
(1)求此抛物线的解析式;
(2)若此抛物线的对称轴与直线交于点D,作⊙D与x轴相切,⊙D交轴于点E、F两点,求劣弧 的长;
(3)P为此抛物线在第二象限图像上的一点,PG垂直于轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1︰2两部分.
(1)
(2) (3)当点P坐标为或时,
△PGA的面积被直线AC分成1︰2两部分.
解析试题分析:(1)∵抛物线经过点,,.
∴, 解得.
∴抛物线的解析式为:. 3分
(2)易知抛物线的对称轴是.把x=4代入y=2x得y=8,∴点D的坐标为(4,8).
∵⊙D与x轴相切,∴⊙D的半径为8. 4分
连结DE、DF,作DM⊥y轴,垂足为点M.
在Rt△MFD中,FD=8,MD=4.
∴∠MDF=60°,∴∠EDF=120°. 6分
∴劣弧EF的长为:. 7分
(3)设直线AC的解析式为y=kx+b. ∵直线AC经过点.
∴,解得.∴直线AC的解析式为:. 8分
设点,PG交直线AC于N,
则点N坐标为.∵.
∴①若PN︰GN=1︰2,则PG︰GN=3︰2,PG=GN.
即=.
解得:m1=-3, m2=2(舍去).
当m=-3时,=.
∴此时点P的坐标为. 10分
②若PN︰GN=2︰1,则PG︰GN=3︰1, PG=3GN.
即=.
解得:,(舍去).当时,=.
∴此时点P的坐标为.
综上所述,当点P坐标为或时,
△PGA的面积被直线AC分成1︰2两部分.
考点:圆与抛物线
点评:本题是圆与抛物线知识的题,本题考查用待定系数法求抛物线的解析式,直线与圆相交及相切,用待定系数法求直线与圆的交点,直线,圆,抛物线三者放在一起,是考试热点