题目内容
【题目】如图,已知△ABC是等边三角形,点D在AC边上一点,连接BD,以BD为边在AB的左侧作等边△DEB,连接AE,求证:AB平分∠EAC.
【答案】详见解析
【解析】
由等边三角形的性质得出AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,证出∠ABE=∠CBD,证明△ABE≌△CBD(SAS),得出∠BAE=∠BCD=60°,得出∠BAE=∠BAC,即可得出结论.
证明:∵△ABC,△DEB都是等边三角形,
∴AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,
∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,
即∠ABE=∠CBD,
在△ABE和△CBD中,
∵AB=CB,
∠ABE=∠CBD,
BE=BD,,
∴△ABE≌△CBD(SAS),
∴∠BAE=∠BCD=60°,
∴∠BAE=∠BAC,
∴AB平分∠EAC.
【题目】在抗击“新冠肺炎疫情”的日子里,上海全市学生积极响应号召开展“停课不停学”的线上学习活动,某中学为了了解全校1200名学生一周内平均每天进行在家体育锻炼时间的情况,随机调查了该校100名学生一周内平均每天在家体育锻炼时间的情况,结果如下表:
时间(分) | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |
人数 | 16 | 24 | 14 | 10 | 8 | 6 | 8 | 4 | 6 | 4 |
完成下列各题:
(1)根据上述统计表中的信息,可知这100名学生一周内平均每天在家体育锻炼时间的众数是______分,中位数是_______分;
(2)小李根据上述统计表中的信息,制作了如下频数分布表和频数分布直方图(不完整),那么①频数分布表中m=______,n=______;②请补全频数分布直方图;
(3)请估计该学校平均每天在家体育锻炼时间不少于35分钟的学生大约有______人.
【题目】某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:
“读书节”活动计划书 | ||
书本类别 | A类 | B类 |
进价(单位:元) | 18 | 12 |
备注 | 1.用不超过16800元购进A,B两类图书共1000本; 2.A类图书不少于600本; …… |
(1)陈经理查看计划数时发现:A类图书的标价是B类图书标价的1.5倍,若顾客用540元购买图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本,请求出A,B两类图书的标价;
(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A类图书每本标价降低a元(0<a<5)销售,B类图书价格不变,那么书店应如何进货才能获得最大利润?