题目内容

【题目】如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.
(1)求证:BE=CE;
(2)求∠CBF的度数;
(3)若AB=6,求 的长.

【答案】
(1)证明:连接AE,

∵AB是⊙O直径,

∴∠AEB=90°,

即AE⊥BC,

∵AB=AC,

∴BE=CE.


(2)解:∵∠BAC=54°,AB=AC,

∴∠ABC=63°,

∵BF是⊙O切线,

∴∠ABF=90°,

∴∠CBF=∠ABF﹣∠ABC=27°.


(3)解:连接OD,

∵OA=OD,∠BAC=54°,

∴∠AOD=72°,

∵AB=6,

∴OA=3,

∴弧AD的长是 =


【解析】(1)连接AE,求出AE⊥BC,根据等腰三角形性质求出即可;(2)求出∠ABC,求出∠ABF,即可求出答案;(3)求出∠AOD度数,求出半径,即可求出答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网