题目内容
【题目】(1)如图甲,,与的关系是什么?并写出推理过程;
(2)如图乙,,直接写出与的数量关系_______________________;
(3)如图丙,,直接写出与的数量关系_____________________.
【答案】(1)∠BEC=∠1+∠3,理由见解析;(2)∠2+∠4=∠1+∠3+∠5;(3)∠2+∠4+∠6=∠1+∠3+∠5+∠7
【解析】
(1)过点E作EF∥AB,如图甲,根据平行公理的推论可得AB∥CD∥EF,然后根据平行线的性质和角的和差可得结论;
(2)分别过点E,G,M,作EF∥AB,GH∥AB,MN∥AB,如图乙,根据平行公理的推论可得AB∥CD∥EF∥GH∥MN,然后根据平行线的性质和角的和差可得结论;
(3)分别过点E,G,M,K,P,作EF∥AB,GH∥AB,MN∥AB,KL∥AB,PQ∥AB,如图丙,根据平行公理的推论可得AB∥CD∥EF∥GH∥MN∥KL∥PQ,然后利用平行线的性质和角的和差可得结论.
解:(1)∠BEC=∠1+∠3.
理由如下:过点E作EF∥AB,如图甲,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠BEF=∠1,∠CEF=∠3,
∴∠BEC=∠BEF+∠CEF=∠1+∠3;
(2)分别过点E,G,M,作EF∥AB,GH∥AB,MN∥AB,如图乙,
∵AB∥CD,
∴AB∥CD∥EF∥GH∥MN,
∴∠1=∠BEF,∠FEG=∠EGH,∠HGM=∠GMN,∠CMN=∠5,
∴∠2+∠4=∠BEF+∠FEG+∠GMN+∠CMN=∠1+∠EGH+∠MGH+∠5=∠1+∠3+∠5;
故答案为:∠2+∠4=∠1+∠3+∠5;
(3)分别过点E,G,M,K,P,作EF∥AB,GH∥AB,MN∥AB,KL∥AB,PQ∥AB,如图丙,
∵AB∥CD,
∴AB∥CD∥EF∥GH∥MN∥KL∥PQ,
∴∠1=∠BEF,∠FEG=∠EGH,∠HGM=∠GMN,∠KMN=∠LKM,∠LKP=∠KPQ,∠QPC=∠7,
∴∠2+∠4+∠6
=∠BEF+∠FEG+∠GMN+∠KMN+∠KPQ+∠QPC
=∠1+∠EGH+∠HGM+∠LKM+∠LKP+∠7
=∠1+∠3+∠5+∠7.
故答案为:∠2+∠4+∠6=∠1+∠3+∠5+∠7.