题目内容
如图,a∥b,∠1=65°,∠2=140°,则∠3=
- A.100°
- B.105°
- C.110°
- D.115°
B
分析:首先过点A作AB∥a,由a∥b,可得AB∥a∥b,然后利用两直线平行,同旁内角互补与两直线平行,同位角相等,即可求得答案.
解答:解:过点A作AB∥a,
∵a∥b,
∴AB∥a∥b,
∴∠2+∠4=180°,
∵∠2=140°,
∴∠4=40°,
∵∠1=65°,
∴∠3=∠1+∠4=65°+40°=105°.
故选B.
点评:此题考查了平行线的性质.此题难度适中,注意掌握辅助线的作法,注意两直线平行,同旁内角互补与两直线平行,同位角相等定理的应用.
分析:首先过点A作AB∥a,由a∥b,可得AB∥a∥b,然后利用两直线平行,同旁内角互补与两直线平行,同位角相等,即可求得答案.
解答:解:过点A作AB∥a,
∵a∥b,
∴AB∥a∥b,
∴∠2+∠4=180°,
∵∠2=140°,
∴∠4=40°,
∵∠1=65°,
∴∠3=∠1+∠4=65°+40°=105°.
故选B.
点评:此题考查了平行线的性质.此题难度适中,注意掌握辅助线的作法,注意两直线平行,同旁内角互补与两直线平行,同位角相等定理的应用.
练习册系列答案
相关题目