题目内容

【题目】根据题意,解答下列问题:

(1)如图①,已知直线y=2x+4与x轴、y轴分别交于A、B两点,求线段AB的长;
(2)如图②,类比(1)的求解过程,请你通过构造直角三角形的方法,求出两点M(3,4),N(﹣2,﹣1)之间的距离;
(3)如图③,P1(x1 , y1),P2(x2 , y2)是平面直角坐标系内的两点,请你利用图③构造直角三角形,并直接写出P1P2的长度(用含有x1 , x2 , y1 , y2的代数式表示).

【答案】
(1)解:如图①,由y=0得,2x+4=0,

x=﹣2,

∴A(﹣2,0),

∴OA=2,

当x=0时,y=4,

∴B(0,4),

∴OB=4,

在Rt△AOB中,由勾股定理得:AB= =2


(2)解:如图②,过M作MP⊥x轴,过N作NP⊥y轴,MP和NP交于P,则MP⊥NP,

∵M(3,4),N(﹣2,﹣1),

∴P(3,﹣1),

∴MP=4﹣(﹣1)=5,NP=3﹣(﹣2)=5,

在Rt△MNP中,由勾股定理得:MN= =5


(3)解:如图③,过P2作P2P⊥x轴,过P1作P1P⊥y轴,P1P和P2P交于P,则P1P⊥P2P,

∵P1(x1,y1),P2(x2,y2),

∴P(x1,y1),

∴P1P=x2﹣x1,P2P=y2﹣y1

在Rt△P1P2P中,由勾股定理得:P1P2=


【解析】(1)如图①,由y=0得,2x+4=0,得到x=﹣2,A(﹣2,0),得到OA=2,当x=0时,y=4,得到B(0,4),OB=4,在Rt△AOB中,由勾股定理得:AB= =2;(2)如图②,过M作MP⊥x轴,过N作NP⊥y轴,MP和NP交于P,则MP⊥NP,得到M(3,4),N(﹣2,﹣1),P(3,﹣1)所以MP=4﹣(﹣1)=5,NP=3﹣(﹣2)=5,在Rt△MNP中,由勾股定理得:MN==5;(3)如图③,过P2作P2P⊥x轴,过P1作P1P⊥y轴,P1P和P2P交于P,则P1P⊥P2P,因为P1(x1,y1),P2(x2,y2),得到P(x1,y1),所以P1P=x2﹣x1,P2P=y2﹣y1,在Rt△P1P2P中,由勾股定理得:P1P22=(x2-x12+(y2-y12.
【考点精析】解答此题的关键在于理解一次函数的性质的相关知识,掌握一般地,一次函数y=kx+b有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网