题目内容
【题目】如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC;
(1)求证:直线DM是⊙O的切线;
(2)若DF=2,AF=5,求BD长.
【答案】(1)见解析;(2)DB=.
【解析】
(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;
(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DFDA,据此解答即可.
(1)如图所示,连接OD,
∵点E是△ABC的内心,
∴∠BAD=∠CAD,
∴,
∴OD⊥BC,
又∵∠BDM=∠DAC,∠DAC=∠DBC,
∴∠BDM=∠DBC,
∴BC∥DM,
∴OD⊥DM,
又∵OD为⊙O半径,
∴直线DM是⊙O的切线;
(2),
∴∠DBF=∠DAB,
又∵∠BDF=∠ADB(公共角),
∴△DBF∽△DAB,
∴=,即DB2=DFDA,
∵DF=2,AF=5∴DA=DF+AF=7
∴DB2=DFDA=14
∴DB=.
【题目】每年5月20日是中国学生营养日,按时吃早餐是一种健康的饮食习惯,为了解本校九年级学生饮食习惯,某兴趣小组在九年级随机抽取了一部分学生每天吃早餐的情况,并将统计结果绘制成如下不完整的统计图表:
组别 | 调查结果 | 所占百分比 |
A | 不吃早餐 | 25% |
B | 偶尔吃早餐 | 12.5% |
C | 经常吃早餐 | |
D | 每天吃早餐 | 50% |
请根据以上统计图表,解答下列问题:
本次接受调查的总人数为_____人.
请补全条形统计图.
该校九年级共有学生人,请估计该校九年级学生每天吃早餐的人数;
请根据此次调查的结果提一条建议.