题目内容
【题目】如图1,已知△ABC中,∠B=90°,AB=BC=4cm,长方形DEFG中,DE=6cm,DG=2cm,点B、C、D、E在同一条直线上,开始时点C与点D重合,然后△ABC沿直线BE以每秒1cm的速度向点E运动,运动时间为t秒,当点B运动到点E时运动停止.(友情提示:长方形的对边平行,四个内角都是直角.)
(1)直接填空:∠BAC=_________度,
(2)当t为何值时,AB与DG重合(如图2所示),并求出此时△ABC与长方形DEFG重合部分的面积.
(3)探索:当6≤t≤8时,△ABC与长方形DEFG重合部分的图形的内角和的度数(直接写出结论及相应的t值,不必说明理由).
【答案】(1)45°(2)6 cm2(3)当t=6时,重合部分为四边形,内角和为360°,当6<t<8时重合部分为五边形,内角和为540°,当t=8时,重合部分为四边形,内角和为360°.
【解析】
试题分析:(1)根据等腰直角三角形的性质可得∠BAC=45°;
(2)首先计算出GH的长,再利用梯形的面积公式可直接得到答案;
(3)根据题意画出图形可直接看出重合部分是哪种多边形,进而得到答案.
解:(1)在△ABC中,
∵∠B=90°,AB=BC,
∴∠BAC=45°,
故答案为:45°;
(2)由题意CD=BC=4cm,
4÷1=4(秒),
长方形DEFG中,GF∥DE,∠D=90°,
∴∠AGH=∠D=90°,
由(1)得∠BAC=45°,
∴∠AHG=180°﹣∠BAC﹣∠AGH=45°,
∴∠BAC=∠AHG,
∴GH=AG,
∵AG=AD﹣GD=4﹣2=2cm,
∴GH=2cm,
∴S梯形GDCH=(cm2);
(3)如图所示:当t=6时,重合部分为四边形,内角和为360°,
当6<t<8时重合部分为五边形,内角和为540°,
当t=8时,重合部分为四边形,内角和为360°.