题目内容

【题目】直线AB交⊙O于C、D两点,CE是⊙O的直径,CF平分∠ACE交⊙O于点F,连接EF,过点F作FG∥ED交AB于点G.

(1)求证:直线FG是⊙O的切线;

(2)若FG=4,⊙O的半径为5,求四边形FGDE的面积.

【答案】(1)证明见解析(2)48

【解析】试题分析:(1)利用角平分线的性质以及等腰三角形的性质得出∠OFC=∠FCG,继而得出∠GFC+∠OFC=90°,即可得出答案

(2)首先得出四边形FGDH是矩形,进而利用勾股定理得出HO的长,进而得出答案.

试题解析(1)连接FO,

∵ OF=OC,

∴ ∠OFC=∠OCF.

∵CF平分∠ACE,

∴∠FCG=∠FCE.

∴∠OFC=∠FCG.

∵ CE是⊙O的直径,

∴∠EDG=90°,

又∵FG∥ED,

∴∠FGC=180°-∠EDG=90°,

∴∠GFC+∠FCG=90°

∴∠GFC+∠OFC=90°,

即∠GFO=90°,

∴OF⊥GF,

又∵OF是⊙O半径,

∴FG与⊙O相切.

(2)延长FO,与ED交于点H,

由(1)可知∠HFG=∠FGD=∠GDH=90°,

∴四边形FGDH是矩形.

∴FH⊥ED,

∴HE=HD.

又∵四边形FGDH是矩形,FG=HD,

∴HE=FG=4.

∴ED=8.

∵在Rt△OHE中,∠OHE=90°,

∴OH=OE2-HE2=52-42=3.

∴FH=FO+OH=5+3=8.

S四边形FGDH=12(FG+ED)FH=12×(4+8)×8=48.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网