题目内容
【题目】已知:如图,在正方形ABCD中,点E在边BC上,点F在边CD的延长线上,且BE=DF.
(1)求∠AEF的度数;
(2)如果∠AEB=75°,AB=2,求△FEC的面积.
【答案】(1)45°;(2)
【解析】(1)根据正方形的性质得到∠B=∠ADF=90°,AD=AB,求出∠ADF,根据SAS即可推出答案,再利用全等三角形的性质解答即可;(2)设EC=x.利用勾股定理计算即可.
解:(1)由正方形ABCD,得 AB=AD,∠B=∠ADF=∠BAD=90°,
在△ABE和△ADF中,
,
∴△ABE≌△ADF,
∴∠BAE=∠FAD,AE=AF.
∴∠BAD=∠BAE+∠EAD=∠FAD+∠EAD=90°.
即得∠EAF=90°,
又∵AE=AF,
∴∠AEF=∠AFE=45°.
(2)∵∠AEB=75°,∠AEF=45°,
∴∠BEF=120°.
即得∠FEC=60°,
由正方形ABCD,得∠C=90°.∴∠EFC=30°.
∴EF=2EC,
设EC=x.则 EF=2x,BE=DF=2﹣x,CF=4﹣x.
在Rt△CEF中,由勾股定理,得 CE2+CF2=EF2.
即得 x2+(4﹣x)2=4x2.
解得,,(不合题意,舍去).
∴,.
∴△FEC的面积为.
练习册系列答案
相关题目