题目内容
【题目】如图,已知抛物线=与轴交于、两点,与轴交于点,且=.
(1)求抛物线的函数表达式;
(2)若点是线段上的一个动点(不与、重合),分别以、为一边,在直线的同侧作等边三角形和,求的最大面积,并写出此时点的坐标;
(3)如图,若抛物线的对称轴与轴交于点,是抛物线上位于对称轴右侧的一个动点,直线与轴交于点.是否存在点,使与相似?若存在,请求出点的坐标;若不存在,请说明理由.
【答案】(1);(2),(1,0);(3)存在,、、或
【解析】
(1)令x=0得,y=4,求出点C(0,4),根据OB=OC=4,得到点B(4,0)代入抛物线表达式求出a的值,即可解答;
(2)过点M作MG⊥x轴于G,过点N作NH⊥x轴于H,设P(x,0),△PMN的面积为S,分别表示出,,,,根据=,利用二次函数的性质当x=1时,S有最大值是,此时点的坐标是;
(3)存在点F,使得△DOE与△AOC相似.有两种可能情况:①△DOE∽△AOC;②△DOE∽△COA,先求出点E的坐标,再求出直线DE的解析式,利用方程组求出点F的坐标,即可解答.
解:(1)令=得,=,
∴,
∴==,
∴,
代入抛物线表达式得:
=,解得,
∴抛物线的函数表达式为,
(2)如图,过点作轴于,过点作轴于,
由抛物线得:,
设,的面积为,
则,,,,
∴=,
S,
∵,
∴当=时,有最大值是,
∴的最大面积是,此时点的坐标是,
(3)存在点,使得与相似.有两种可能情况:①;②,
由抛物线得:,对称轴为直线=,
∴=,=,=,
①若,则,
∴,
解得=,
∴点的坐标是或,
若点的坐标是,
则直线为:=,
解方程组,
得:,(不合题意,舍去),
此时满足条件的点的坐标为,
若点的坐标是,
同理可求得满足条件的点的坐标为,
②若,
同理也可求得满足条件的点的坐标为,
满足条件的点的坐标为,
综上所述,存在满足条件的点,点的坐标为:
、、或.