题目内容

【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.
(1)求证:BD=BF;
(2)若AB=10,CD=4,求BC的长.

【答案】
(1)证明:∵AB是⊙O的直径,

∴∠BDA=90°,

∴BD⊥AC,∠BDC=90°,

∵BF切⊙O于B,

∴AB⊥BF,

∵CF∥AB,

∴CF⊥BF,∠FCB=∠ABC,

∵AB=AC,

∴∠ACB=∠ABC,

∴∠ACB=∠FCB,

∵BD⊥AC,BF⊥CF,

∴BD=BF


(2)解:∵AB=10,AB=AC,

∴AC=10,

∵CD=4,

∴AD=10﹣4=6,

在Rt△ADB中,由勾股定理得:BD= =8,

在Rt△BDC中,由勾股定理得:BC= =4


【解析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.
【考点精析】本题主要考查了等腰三角形的性质和切线的性质定理的相关知识点,需要掌握等腰三角形的两个底角相等(简称:等边对等角);切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网