题目内容

【题目】如图,已知点A(,y1)、B(2,y2)在反比例函数y=的图像上,动点P(x,0)在x轴正半轴上运动,若AP-BP最大时,则点P的坐标是 ( )

A. ,0) B. ,0) C. ,0) D. (1,0)

【答案】B

【解析】分析:求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP﹣BP|<AB,延长AB交x轴于P′,当P在P′点时,PA﹣PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.

详解:∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=

∴A(,2),B(2,),

∵在△ABP中,由三角形的三边关系定理得:|AP﹣BP|<AB,

∴延长AB交x轴于P′,当P在P′点时,PA﹣PB=AB,

即此时线段AP与线段BP之差达到最大,

设直线AB的解析式是y=kx+b,

把A、B的坐标代入得:

解得:k=﹣1,b=

∴直线AB的解析式是y=﹣x+

当y=0时,x=

即P(,0),

故选:B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网