题目内容
【题目】如图,在菱形ABCD中,∠ABC=60°,AB=4,点E是AB边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为( )
A.
B.2
C. π
D. π
【答案】D
【解析】解:如图,连接AC、BD交于点G,连接OG.
∵BF⊥CE,
∴∠BFC=90°,
∴点F的运动轨迹在以边长为直径的⊙O上,
当点E从点A运动到点B时,点F的运动路径长为 ,
∵四边形ABCD是菱形,
∴AB=BC=CD=AD=4,
∵∠ABC=60°,
∴∠BCG=60°,
∴∠BOG=120°,
∴ 的长= = π,
所以答案是:D.
【考点精析】解答此题的关键在于理解圆周角定理的相关知识,掌握顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半,以及对弧长计算公式的理解,了解若设⊙O半径为R,n°的圆心角所对的弧长为l,则l=nπr/180;注意:在应用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的.
练习册系列答案
相关题目