题目内容
【题目】已知△OAB在平面直角坐标系中的位置如图所示,将△ABO绕原点O逆时针旋转90°得到△OA1B1.
(1)画出△OA1B1,并写出点A1、B1的坐标;
(2)求△ABO绕原点O逆时针旋转90°扫过的面积.
【答案】(1) 作图见解析;A1(-1,3) B1(-2,2);(2) .
【解析】
(1)先画出点A,B的对应点A1,B1,再顺次连接起来,即可;
(2)由题意得:△ABO绕原点O逆时针旋转90°扫过的面积=,进而即可求解.
(1)△OA1B1如图所示,根据△OA1B1在坐标系中的位置,得A1(-1,3), B1(-2,2);
(2)由题意得:AB=,OB=,OA=,
∵,
∴△ABO是直角三角形,
∴△ABO绕原点O逆时针旋转90°扫过的面积=
=.
【题目】为了创建文明城市,增强学生的环保意识.随机抽取8名学生,对他们的垃圾分类投放情况进行调查,这8名学生分别标记为,其中“√”表示投放正确,“×”表示投放错误,统计情况如下表.
学生 垃圾类别 | ||||||||
厨余垃圾 | √ | √ | √ | √ | √ | √ | √ | √ |
可回收垃圾 | √ | × | √ | × | × | √ | √ | √ |
有害垃圾 | × | √ | × | √ | √ | × | × | √ |
其他垃圾 | × | √ | √ | × | × | √ | √ | √ |
(1)求8名学生中至少有三类垃圾投放正确的概率;
(2)为进一步了解垃圾分类投放情况,现从8名学生里“有害垃圾”投放错误的学生中随机抽取两人接受采访,试用标记的字母列举所有可能抽取的结果.
【题目】某市精准扶贫工作已经进入攻坚阶段,贫困的张大爷在某单位的帮扶下,把一片坡地改造后种植了大樱桃.今年正式上市销售,在销售30天中,第一天卖出20千克,为了扩大销量,在一段时间内采取降价措施,每天比前一天多卖出4千克.当售价不变时,销售量也不发生变化.已知种植销售大樱桃的成本为18元/千克,设第天的销售价元/千克,与函数关系如下表:
表一
天数 | 1 | 2 | 3 | …… | …… | 20 |
售价(元/千克) | 37.5 | 37 | 36.5 | …… | …… | 28 |
表二
天数 | 21 | 22 | …… | …… | 30 |
售价(元/千克) | 28 | 28 | …… | …… | 28 |
(1)求与函数解析式;
(2)求销售大樱桃第几天时,当天的利润最大?最大利润是多少?
(3)销售大樱桃的30天中,当天利润不低于