题目内容
【题目】在平面直角坐标系中,△ABC的顶点坐标分别为A(2,0),B(0,4),C(﹣3,2).
(1)如图1,求△ABC的面积.
(2)若点P的坐标为(m,0),
①请直接写出线段AP的长(用含m的式子表示);
②当S△PAB=2S△ABC时,求m的值.
(3)如图2,若AC交y轴于点D,直接写出点D的坐标为 .
【答案】
(1)解:过点C作CD⊥x轴,垂足为D,过点B作BE⊥CD,交DC延长线于E,
过点A作AF⊥BE,交EB延长线于F.如图所示:
∵A(2,0),B(0,4),C(﹣3,2)
∴D(﹣3,0),E(﹣3,4),F(2,4).
∴AD=5,CD=2,BE=3,CE=2,DE=4,BF=2,AF=4.
∴S△ABC=S矩形ADEF﹣S△ACD﹣S△BCE﹣S△ABF= = =8.
答:△ABC的面积是8.
(2)|m﹣2||∵S△PAB=2S△ABC
∴
∴AP=|m﹣2|=8,
∴m﹣2=8或m﹣2=﹣8,
∴m=10或m=﹣6;
(3)(0, )
【解析】(2)①根据题意得:AP=|m﹣2|;
所以答案是:|m﹣2|;
3)设直线AC的解析式为y=kx+b,
根据题意得: ,
解得:k=﹣ ,b= ;
∴直线AC的解析式为y=﹣ x+ ,
当x=0时,y= ,
∴D(0, ),;
所以答案是:(0, ).
练习册系列答案
相关题目