题目内容
13、如图,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为
120
.分析:先根据平行线及角平分线的性质求出∠CDB=∠CBD,再根据平角的性质求出∠CDB的度数,再根据平行线的性质求出∠C的度数即可.
解答:解:∵直线AB∥CD,
∴∠CDB=∠ABD,
∵∠CDB=180°-∠CDE=30°,
∴∠ABD=30°,
∵BE平分∠ABC,
∴∠ABD=∠CBD,
∴∠ABC=∠CBD+∠ABD=60°,
∵AB∥CD,
∴∠C=180°-∠ABC=180°-60°=120°,
故答案为120°.
∴∠CDB=∠ABD,
∵∠CDB=180°-∠CDE=30°,
∴∠ABD=30°,
∵BE平分∠ABC,
∴∠ABD=∠CBD,
∴∠ABC=∠CBD+∠ABD=60°,
∵AB∥CD,
∴∠C=180°-∠ABC=180°-60°=120°,
故答案为120°.
点评:本题考查的是平行线、平角的定义以及角平分线的性质,比较简单.
练习册系列答案
相关题目