题目内容
【题目】如图,两条射线AM∥BN,线段CD的两个端点C、D分别在射线BN、AM上,且∠A=∠BCD=108°.E是线段AD上一点(不与点A、D重合),且BD平分∠EBC.
(1)求∠ABC的度数.
(2)请在图中找出与∠ABC相等的角,并说明理由.
(3)若平行移动CD,且AD>CD,则∠ADB与∠AEB的度数之比是否随着CD位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.
【答案】(1)∠ABC=72°;(2)与∠ABC相等的角是∠ADC、∠DCN;(3)不发生变化.比值为.
【解析】
(1)由平行线的性质可求得∠A+∠ABC=180°,即可求得答案;
(2)利用平行线的性质可求得∠ADC=∠DCN,∠ADC+∠BCD=180°,则可求得答案;
(3)利用平行线的性质,可求得∠AEB=∠EBC,∠ADB=∠DBC,再结合角平分线的定义可求得答案.
(1)∵AM∥BN,∴∠A+∠ABC=180°,∴∠ABC=180°﹣∠A=180°﹣108°=72°.
(2)与∠ABC相等的角是∠ADC、∠DCN.
∵AM∥BN,∴∠ADC=∠DCN,∠ADC+∠BCD=180°,∴∠ADC=180°﹣∠BCD=180°﹣108°=72°,∴∠DCN=72°,∴∠ADC=∠DCN=∠ABC.
(3)不发生变化.
∵AM∥BN,∴∠AEB=∠EBC,∠ADB=∠DBC.
∵BD平分∠EBC,∴∠DBC∠EBC,∴∠ADB∠AEB,∴∴.
练习册系列答案
相关题目