题目内容
【题目】如图所示,AB∥CD,AD∥BC,BE=DF,则图中全等三角形共有( )对.
A. 2B. 3C. 4D. 1
【答案】B
【解析】
根据AB∥CD,AD∥BC可得∠ABD=∠CDB,∠ADB=∠CBD,结合公共边BD=DB利用ASA可证ABD≌△CDB;由ABD≌△CDB可得AB=CD,∠ABD=∠CDB,结合BE=DF利用SAS可证△ABE≌△CDF;由ABD≌△CDB,△ABE≌△CDF可得AD=CB,AE=CF,求出BF=DE利用SSS证明△AED≌△CFB,问题得解.
解:①∵AB∥CD,AD∥BC,
∴∠ABD=∠CDB,∠ADB=∠CBD,
∵BD=DB,
∴ABD≌△CDB(ASA);
②∵ABD≌△CDB,
∴AB=CD,∠ABD=∠CDB,
∵BE=DF,
∴△ABE≌△CDF(SAS);
③∵ABD≌△CDB,△ABE≌△CDF,
∴AD=CB,AE=CF,
∵BE=DF,
∴BE+EF=DF+EF,即BF=DE,
∴△AED≌△CFB(SSS);
所以图中全等三角形共有3对.
故选:B.
练习册系列答案
相关题目