题目内容

【题目】如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.

(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6 ,AF=4 ,求AE的长.

【答案】
(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,

∴∠C+∠B=180°,∠ADF=∠DEC.

∵∠AFD+∠AFE=180°,∠AFE=∠B,

∴∠AFD=∠C.

在△ADF与△DEC中,

∴△ADF∽△DEC


(2)解:∵四边形ABCD是平行四边形,∴CD=AB=8.

由(1)知△ADF∽△DEC,

,∴DE= = =12.

在Rt△ADE中,由勾股定理得:AE= = =6


【解析】(1)由平行四边形得出两组对边分别平行证出AB∥CD,AD∥BC,得出∠ADF=∠DEC。及∠C+∠B=180°,再由∠AFE=∠B.证明∠AFD=∠C.可证得△ADF∽△DEC 。
(1)由△ADF∽△DEC,得出对应边成比例,即可求出DE的长,,再利用勾股定理求出AE的长。
【考点精析】本题主要考查了勾股定理的概念和平行四边形的性质的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网