题目内容
【题目】如图,在△ABC中,AB=AC,以AC边为直径作⊙O交BC边于点D,过点D作DE⊥AB于点E,ED、AC的延长线交于点F.
(1)求证:EF是⊙O的切线;
(2)若EB=,且sin∠CFD=,求⊙O的半径与线段AE的长.
【答案】(1)证明见解析;(2)r=,AE=6.
【解析】
试题分析:(1)连结OD,如图,由AB=AC得到∠B=∠ACD,由OC=OD得到∠ODC=∠OCD,则∠B=∠ODC,于是可判断OD∥AB,然后利用DE⊥AB得到OD⊥EF,然后根据切线的判定定理得到结论;
(2)在Rt△ODF利用正弦的定义得到sin∠OFD==,则可设OD=3x,OF=5x,所以AB=AC=6x,AF=8x,在Rt△AEF中由于sin∠AFE=,可得到AE=,接着表示出BE得到,解得x=,于是可得到AE和OD的长.
试题解析:(1)连结OD,如图,∵AB=AC,∴∠B=∠ACD,∵OC=OD,∴∠ODC=∠OCD,∴∠B=∠ODC,∴OD∥AB,∵DE⊥AB,∴OD⊥EF,∴EF是⊙O的切线;
(2)在Rt△ODF,sin∠OFD==,设OD=3x,则OF=5x,∴AB=AC=6x,AF=8x,在Rt△AEF中,∵sin∠AFE==,∴AE==,∵BE=AB﹣AE=6x﹣=,∴,解得x=,∴AE==6,OD==,即⊙O的半径长为.
练习册系列答案
相关题目