题目内容
【题目】如图,已知二次函数(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:
①abc>0,②4a+2b+c>0,③<8a,④<a<,⑤b>c.
其中含所有正确结论的选项是( )
A.①③ B.①③④ C.②④⑤ D.①③④⑤
【答案】D.
【解析】
试题分析:①∵函数开口方向向上,∴a>0;∵对称轴在原点左侧,∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;
②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=﹣1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;
③∵图象与x轴交于点A(﹣1,0),∴当x=﹣1时,y=(﹣1)2a+b×(﹣1)+c=0,∴a﹣b+c=0,即a=b﹣c,c=b﹣a,∵对称轴为直线x=1,∴=1,即b=﹣2a,∴c=b﹣a=(﹣2a)﹣a=﹣3a,∴=4a(﹣3a)﹣=<0,∵8a>0,∴<8a,故③正确;
④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1,∴﹣2<﹣3a<﹣1,∴>a>;故④正确;
⑤∵a>0,∴b﹣c>0,即b>c;故⑤正确;
故选D.
练习册系列答案
相关题目