题目内容

精英家教网如图,在正△ABC中,D为AC上一点,E为AB上一点,BD,CE交于P,若四边形ADPE与△BPC面积相等,则∠BPE的度数为(  )
A、60°B、45°C、75°D、50°
分析:根据三角形全等的判定定理,可证△AEC≌△CDB,证得∠BPE=∠DBC+∠ECB=∠ACP+∠ECB=60°.
解答:精英家教网解:作EN⊥AC,DM⊥BC,垂足为N、M,
∵四边形ADPE与△BPC面积相等,
∴它们都加上△PDC的面积也相等.即△AEC与△CDB面积相等,
1
2
×EN×AC=
1
2
×DM×BC,AC=BC,
∴EN=DM,∴△AEN≌△CDM,
∴AE=DC,
∵在正△ABC中,AC=BC,∠A=∠BCD,可得△AEC≌△CDB,
∴∠ACP=∠DBC,
∴∠BPE=∠DBC+∠ECB=∠ACP+∠ECB=60°,
故选A.
点评:解决本题的关键是利用全等得到一对对应角相等,进而求得所求角的度数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网