题目内容
【题目】把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是( )
A. 6B. 6C. 3D. 3+3
【答案】A
【解析】
试题由边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,利用勾股定理的知识求出BC′的长,再根据等腰直角三角形的性质,勾股定理可求BO,OD′,从而可求四边形ABOD′的周长.
连接BC′, ∵旋转角∠BAB′=45°,∠BAD′=45°, ∴B在对角线AC′上, ∵B′C′=AB′=3,
在Rt△AB′C′中,AC′==3, ∴B′C=3﹣3,
在等腰Rt△OBC′中,OB=BC′=3﹣3, 在直角三角形OBC′中,OC=(3﹣3)=6﹣3,
∴OD′=3﹣OC′=3﹣3,
∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3﹣3+3﹣3=6
练习册系列答案
相关题目