题目内容
(6分)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:
小题1:(1)根据上面多面体模型,完成表格中的空格:
小题2:(2)你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是
小题3:(3)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是
小题4:(4)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,x+y=
小题1:(1)根据上面多面体模型,完成表格中的空格:
多面体 | 顶点数(V) | 面数(F) | 棱数(E) |
四面体 | 4 | 4 | 6 |
长方体 | 8 | 6 | 12 |
正八面体 | 6 | 8 | 12 |
正十二面体 | | | |
小题3:(3)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是
小题4:(4)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,x+y=
小题1:(1)20 12 30
小题2:(2)V+F-E=2
小题3:(3)20
小题4:(4)14
略
练习册系列答案
相关题目