题目内容
如图,直线y=-x+b与双曲线y=-1 | x |
分析:由直线y=-x+b与双曲线y=-
(x<0)交于点A可知:x+y=b,xy=-1,又OA2=x2+y2,OB2=b2,由此即可求出OA2-OB2的值.
1 |
x |
解答:解:∵直线y=-x+b与双曲线y=-
(x<0)交于点A,
设A的坐标(x,y),
∴x+y=b,xy=-1,
而直线y=-x+b与x轴交于B点,
∴OB=b
∴又OA2=x2+y2,OB2=b2,
∴OA2-OB2=x2+y2-b2=(x+y)2-2xy-b2=b2+2-b2=2.
故答案为:2.
1 |
x |
设A的坐标(x,y),
∴x+y=b,xy=-1,
而直线y=-x+b与x轴交于B点,
∴OB=b
∴又OA2=x2+y2,OB2=b2,
∴OA2-OB2=x2+y2-b2=(x+y)2-2xy-b2=b2+2-b2=2.
故答案为:2.
点评:此题难度较大,主要考查一次函数与反比例函数的图形和性质,也考查了图象交点坐标和解析式的关系.
练习册系列答案
相关题目