题目内容
【题目】完成下列推理,并填写完理由
已知,如图,∠BAE+∠AED=180°,∠M=∠N,
试说明:
解:∵∠BAE+∠AED=180(已知)
∴ ∥ ( )
∴∠BAE= ( 两直线平行,内错角相等 )
又∵∠M=∠N (已知)
∴ ∥ ( )
∴∠NAE= ( )
∴∠BAE-∠NAE= - ( )
即∠1=∠2
【答案】见解析.
【解析】
根据同旁内角互补两直线平行和内错角相等两直线平行可证得AB∥CD,AN∥ME,再根据平行线的性质,得∠BAE=∠AEC,∠NAE=∠MEA,结合图形,根据等式性质,可得∠1=∠2.
解:∵∠BAE+∠AED=180°,
∴AB∥CD(同旁内角互补,两直线平行),
∴∠BAE=∠AEC(两直线平行,内错角相等),
又∵∠M=∠N (已知),
∴AN∥ME(内错角相等,两直线平行),
∴∠NAE=∠MEA(两直线平行,内错角相等),
∴∠BAE∠NAE=∠AEC∠MEA(等式性质),
即∠1=∠2.
练习册系列答案
相关题目