题目内容
【题目】【再现】如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=BC.(不需要证明)
【探究】如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH的形状,并加以证明.
【应用】在(1)【探究】的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是: .(只添加一个条件)
(2)如图③,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,对角线AC,BD相交于点O.若AO=OC,四边形ABCD面积为5,则阴影部分图形的面积和为 .
【答案】【探究】平行四边形;【应用】(1)添加AC=BD;(2).
【解析】试题分析:【探究】利用三角形的中位线定理可得出HG=EF、EF∥GH,继而可判断出四边形EFGH的形状;
【应用】(1)同【探究】的方法判断出EF=AC,即可判断出EF=FG,即可得出结论;
(2)先判断出S△BCD=4S△CFG,同理:S△ABD=4S△AEH,进而得出S四边形EFGH=,再判断出OM=ON,进而得出S阴影=S四边形EFGH即可.
试题解析:解:【探究】平行四边形.理由:如图1,连接AC,∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形.
【应用】(1)添加AC=BD.理由:连接AC,BD,同(1)知,EF=AC,同【探究】的方法得,FG=BD,∵AC=BD,∴EF=FG,∵四边形EFGH是平行四边形,∴EFGH是菱形;
故答案为:AC=BD;
(2)如图2,由【探究】得,四边形EFGH是平行四边形,∵F,G是BC,CD的中点,∴FG∥BD,FG=BD,∴△CFG∽△CBD,∴,∴S△BCD=4S△CFG,同理:S△ABD=4S△AEH,∵四边形ABCD面积为5,∴S△BCD+S△ABD=5,∴S△CFG+S△AEH=,同理:S△DHG+S△BEF=,∴S四边形EFGH=S四边形ABCD﹣(S△CFG+S△AEH+S△DHG+S△BEF)=5﹣=,设A与FG,EH相交于M,N,EF与BD相交于P,∵FG∥BD,FG=BD,∴CM=OM=OC,同理:AN=ON=OA,∵OA=OC,∴OM=ON,易知,四边形ENOP,FMOP是平行四边形,∴S阴影=S四边形EFGH=.故答案为: .