题目内容

【题目】如图,已知一次函数y= x+b的图象与反比例函数y= (x<0)的图象交于点A(﹣1,2)和点B,点C在y轴上.

(1)当△ABC的周长最小时,求点C的坐标;
(2)当 x+b< 时,请直接写出x的取值范围.

【答案】
(1)解:作点A关于y轴的对称点A′,连接A′B交y轴于点C,此时点C即是所求,如图所示.

∵反比例函数y= (x<0)的图象过点A(﹣1,2),

∴k=﹣1×2=﹣2,

∴反比例函数解析式为y=﹣ (x<0);

∵一次函数y= x+b的图象过点A(﹣1,2),

∴2=﹣ +b,解得:b=

∴一次函数解析式为y= x+

联立一次函数解析式与反比例函数解析式成方程组:

解得: ,或

∴点A的坐标为(﹣1,2)、点B的坐标为(﹣4, ).

∵点A′与点A关于y轴对称,

∴点A′的坐标为(1,2),

设直线A′B的解析式为y=mx+n,

则有 ,解得:

∴直线A′B的解析式为y= x+

令y= x+ 中x=0,则y=

∴点C的坐标为(0, ).


(2)解:观察函数图象,发现:

当x<﹣4或﹣1<x<0时,一次函数图象在反比例函数图象下方,

∴当 x+ <﹣ 时,x的取值范围为x<﹣4或﹣1<x<0.


【解析】本题考查了反比例函数与一次函数的交点问题、轴对称中的最短线路问题、利用待定系数法求函数解析式以及反比例函数图象上点的坐标特征,解题的关键是:(1)求出直线A′B的解析式;(2)找出交点坐标.本题属于中档题,难度不大,但解题过程稍显繁琐,解决该题型题目时,找出点的坐标,利用待定系数法求出函数解析式是关键.(1)作点A关于y轴的对称点A′,连接A′B交y轴于点C,此时点C即是所求.由点A为一次函数与反比例函数的交点,利用待定系数法和反比例函数图象点的坐标特征即可求出一次函数与反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点A、B的坐标,再根据点A′与点A关于y轴对称,求出点A′的坐标,设出直线A′B的解析式为y=mx+n,结合点的坐标利用待定系数法即可求出直线A′B的解析式,令直线A′B解析式中x为0,求出y的值,即可得出结论;(2)根据两函数图象的上下关系结合点A、B的坐标,即可得出不等式的解集.
【考点精析】解答此题的关键在于理解确定一次函数的表达式的相关知识,掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法,以及对轴对称-最短路线问题的理解,了解已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网