题目内容

如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB分别交于D、E,且⊙O与直线BD刚好相切.
(1)试证:∠CBD=∠A;
(2)若cosA=
2
5
5
,BD=2
5
,试计算⊙O的面积.
(1)证明:连OD,如图,
∴∠A=∠ADO,
∵直线BD与⊙O相切,
∴OD⊥BD,
∴∠ODB=90°,
∴∠ADO+∠BDC=90°,
又∵∠C=90°,
∴∠CBD+∠CDB=90°,
∴∠CBD=∠ADO,
∴∠CBD=∠A;
(2)连DE,cosA=cos∠CBD=
2
5
5

在Rt△DCB,cosA=
2
5
5
,BD=2
5

∴cos∠CBD=
BC
DB

∴BC=
2
5
5
×2
5
=4,
∴DC=
BD2-BC2
=2,
∵AE为直径,
∴∠ADE=90°,
在Rt△ABC中,设⊙O的半径为r,
∴cosA=
AD
AE
=
2
5
5

∴AD=2r•
2
5
5
=
4
5
5
r,
∴DE=
2
5
5
r,
∵DEBC,
∴DE:BC=AD:AC,即
2
5
5
r:4=
4
5
5
r:(
4
5
5
r+2),
∴r=
3
5
2

∴⊙O的面积=π•(
3
5
2
2=
45
4
π.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网