题目内容
【题目】如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,P在反比例函数y的图象上.PA的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.
(1)求∠P的度数及点P的坐标;
(2)求△OCD的面积;
(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.
【答案】(1)∠MPN=90°,P(3,3).(2)9;(3)27﹣18.
【解析】
(1)如图,作PM⊥OA于 M,PN⊥OB于N,PH⊥AB于H.利用全等三角形的性质解决问题即可.
(2)设OA=a,OB=b,则AM=AH=3-a,BN=BH=3-b,利用勾股定理求出a,b之间的关系,求出OC,OD即可解决问题.
(3)设OA=a,OB=b,则AM=AH=3-a,BN=BH=3-b,可得AB=6-a-b,推出OA+OB+AB=6,可得,利用基本不等式即可解决问题.
解:(1)如图,作PM⊥OA于M,PN⊥OB于N,PH⊥AB于H.
∴∠PMA=∠PHA=90°,
∵∠PAM=∠PAH,PA=PA,
∴△PAM≌△PAH(AAS),
∴PM=PH,∠APM=∠APH,
同理可证:△BPN≌△BPH,
∴PH=PN,∠BPN=∠BPH,
∴PM=PN,
∵∠PMO=∠MON=∠PNO=90°,
∴四边形PMON是矩形,
∴∠MPN=90°,
∴∠APB=∠APH+∠BPH(∠MPH+∠NPH)=45°,
∵PM=PN,
∴可以假设P(m,m),
∵P(m,m)在上,
∴m2=9,
∵m>0,
∴m=3,
∴P(3,3).
(2)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,
∴AB=6﹣a﹣b,
∵AB2=OA2+OB2,
∴a2+b2=(6﹣a﹣b)2,
可得ab=6a+6b﹣18,
∴3a+3b﹣9ab,
∵PM∥OC,
∴,
∴,
∴OC,同法可得OD,
∴.
(3)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,
∴AB=6﹣a﹣b,
∴OA+OB+AB=6,
∴,
∴,
∴,
∴,
∴,
∴,
∴△AOB的面积的最大值为:27﹣18.
【题目】二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列结论:
①ac<0;
②当x>1时,y的值随x值的增大而减小.
③3是方程ax2+(b﹣1)x+c=0的一个根;
④当﹣1<x<3时,ax2+(b﹣1)x+c>0.
其中正确的结论是 .