题目内容
【题目】已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1 , x2 .
(1)求k的取值范围;
(2)若|x1+x2|=x1x2﹣1,求k的值
【答案】
(1)解:∵方程x2-2(k-1)x+k2=0有两个实数根x1,x2,
∴△≥0,即4(k-1)2-4×1×k2≥0,解得k≤ ,
∴k的取值范围为k≤ ;
(2)解:根据题意得x1+x2=2(k-1),x1x2=k2,
∵k≤ ,
x1+x2=2(k-1)<0,则-(x1+x2)=x1x2﹣1,所以-2(k-1)= k2﹣1
∴x1+x2=2(k-1)<0,
∴-(x1+x2)=x1x2﹣1,
∴-2(k-1)= k2﹣1,
整理得k2+2k-3=0,
解得k1=-3,k2=1
∵k≤ ,
∴k=-3
【解析】(1)根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac的意义得到△≥0,即4(k-1)2-4×1×k2≥0,解不等式即可得到k的范围;(2)根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到x1+x2=2(k-1),x1x2=k2 , 利用k≤ 得到x1+x2=2(k-1)<0,则-(x1+x2)=x1x2﹣1,所以-2(k-1)= k2﹣1,然后然后解关于k的一元二次方程,然后利用k的范围确定k的值.
【题目】(1)在下列表格中填上相应的值
x | … | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | … |
… | -1 | -2 | 3 | 1 | … |
(2)若将上表中的变量用y来代替(即有),请以表中的的值为点的坐标, 在下方的平面直角坐标系描出相应的点,并用平滑曲线顺次连接各点
(3)在(2)的条件下,可将y看作是x的函数 ,请你结合你所画的图像,写出该函数图像的两个性质 :__________________________________________________.
(4)结合图像,借助之前所学的函数知识,直接写出不等式的解集: ____________