题目内容
【题目】毕达哥拉斯学派对”数”与”形”的巧妙结合作了如下研究:
名称及图形 几何点数 层数 | 三角形数 | 正方形数 | 五边形数 | 六边形数 |
第一层几何点数 | 1 | 1 | 1 | 1 |
第二层几何点数 | 2 | 3 | 4 | 5 |
第三层几何点数 | 3 | 5 | 7 | 9 |
… | … | … | … | … |
第六层几何点数 |
|
|
|
|
… | … | … | … | … |
第n层几何点数 |
|
|
|
|
请写出第六层各个图形的几何点数,并归纳出第n层各个图形的几何点数.
【答案】6、11、16、21、n、2n﹣1、3n﹣2、4n﹣3.
【解析】
试题分析:首先看三角形数,根据前三层的几何点数分别是1、2、3,可得第六层的几何点数是6,第n层的几何点数是n;然后看正方形数,根据前三层的几何点数分别是1=2×1﹣1、3=2×2﹣1、5=2×3﹣1,可得第六层的几何点数是2×6﹣1=11,第n层的几何点数是2n﹣1;再看五边形数,根据前三层的几何点数分别是1=3×1﹣2、2=3×2﹣2、3=3×3﹣2,可得第六层的几何点数是3×6﹣2=16,第n层的几何点数是3n﹣2;最后看六边形数,根据前三层的几何点数分别是1=4×1﹣3、5=4×2﹣3、9=4×3﹣3,可得第六层的几何点数是4×6﹣3=21,第n层的几何点数是4n﹣3,据此解答即可.
解:∵前三层三角形的几何点数分别是1、2、3,
∴第六层的几何点数是6,第n层的几何点数是n;
∵前三层正方形的几何点数分别是:1=2×1﹣1、3=2×2﹣1、5=2×3﹣1,
∴第六层的几何点数是:2×6﹣1=11,第n层的几何点数是2n﹣1;
∵前三层五边形的几何点数分别是:1=3×1﹣2、2=3×2﹣2、3=3×3﹣2,
∴第六层的几何点数是:3×6﹣2=16,第n层的几何点数是3n﹣2;
前三层六边形的几何点数分别是:1=4×1﹣3、5=4×2﹣3、9=4×3﹣3,
∴第六层的几何点数是:4×6﹣3=21,第n层的几何点数是4n﹣3.
名称及图形 几何点数 层数 | 三角形数 | 正方形数 | 五边形数 | 六边形数 |
第一层几何点数 | 1 | 1 | 1 | 1 |
第二层几何点数 | 2 | 3 | 4 | 5 |
第三层几何点数 | 3 | 5 | 7 | 9 |
… | … | … | … | … |
第六层几何点数 | 6 | 11 | 16 | 21 |
… | … | … | … | … |
第n层几何点数 | n | 2n﹣1 | 3n﹣2 | 4n﹣3 |
故答案为:6、11、16、21、n、2n﹣1、3n﹣2、4n﹣3.
【题目】某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:
普通(元/间) | 豪华(元/间) | |
三人间 | 160 | 400 |
双人间 | 140 | 300 |
一个50人的旅游团到该酒店入住,选择了一些三人普通间和双人豪华间入住,且恰好住满.已知该旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?