题目内容
【题目】如图,在平行四边形ABCD中,P是CD边上的一点,AP与BP分别平分∠DAB和∠CBA.
(1)判断△APB是什么三角形,证明你的结论;
(2)比较DP与PC的大小;
(3)画出以AB为直径的⊙O,交AD于点E,连接BE与AP交于点F,若tan∠BPC=,求tan∠AFE的值.
【答案】(1)△APB是直角三角形,理由见解析;(2)DP=PC;(3)tan∠AFE=.
【解析】
(1)可通过角的度数来判断三角形APB的形状.由于ABCD是平行四边形,AD∥BC,那么同旁内角∠DAB和∠CBA的和应该是180°,AP与BP分别平分∠DAB和∠CBA,于是∠PAB和∠ABP的和就应该是90°,即∠APB=90°,因此可得出三角形APB的形状.
(2)可通过平行和角平分线,通过等角对等边得出DP=AP,同理可证出PC=BC,根据平行四边形的性质,AD=BC,可得出DP=PC.
(3)由AB为圆的直径,根据直径所对的圆周角为直角得到∠AEB=∠APB=90°,又AP为角平分线,根据角平分线定义得到一对角相等,根据两对角相等的两三角形相似,得到三角形AEF与三角形APB相似,进而得到对应角相等,又平行四边形的对边AB与DC平行,得到一对内错角相等,等量代换得到∠AFE与∠BPC相等,即可求出所求∠AFE的正切值.
(1)△APB是直角三角形,理由如下:
∵AD∥BC,
∴∠DAB+∠ABC=180°;
又∵AP与BP分别平分∠DAB和∠CBA
∴∠PAB=∠DAB,∠PBA=∠ABC,
∴∠PAB+∠PBA=(∠ABC+∠DAB)
=×180°=90°,
∴△APB是直角三角形;
(2)∵DC∥AB,
∴∠BAP=∠DPA.
∵∠DAP=∠PAB,
∴∠DAP=∠DPA,
∴DA=DP
同理证得CP=CB.
∴DP=PC.
(3)∵AB是⊙O直径,
∴∠AEB=∠APB=90°.
∵AP为角平分线,即∠EAF=∠PAB,
∴△AEF∽△APB,
∴∠AFE=∠ABP,
又ABCD为平行四边形,∴DC∥AB,
∴∠ABP=∠BPC,
∵tan∠BPC=,
∴tan∠AFE=.