题目内容
【题目】如图,已知四边形ABCD中,E、F、G、H分别为AB、BC、CD、DA的中点.
a.原四边形ABCD的对角线AC、BD满足________时,四边形EFGH是矩形.
b.原四边形ABCD的对角线AC、BD满足________时,四边形EFGH是菱形.
c.原四边形ABCD的对角线AC、BD满足________时,四边形EFGH是正方形.
【答案】AC⊥BD AC=BD AC⊥BD且AC=BD
【解析】
首先连接AC,BD,由三角形中位线的性质,可判定EH∥FG,GH∥EF,继而可证得四边形EFGH是平行四边形;
a、由EFGH是平行四边形可得当原四边形ABCD的对角线AC、BD满足AC⊥BD时,四边形EFGH是矩形;
b、由EFGH是平行四边形可得原四边形ABCD的对角线AC、BD满足AC=BD时,四边形EFGH是菱形;
c、由a与b可得:原四边形ABCD的对角线AC、BD满足AC⊥BD且AC=BD时,四边形EFGH是正方形.
连接AC,BD,
∵四边形ABCD中,E、F、G、H分别为AB、BC、CD、DA的中点,
∴EH∥BD,FG∥BD,
∴EH∥FG,
同理:GH∥EF,
∴四边形EFGH是平行四边形.
a、当AC⊥BD时,四边形EFGH是矩形.
∵由①得:四边形MONH是平行四边形,
∴当AC⊥BD时,四边形MONH是矩形,
∴∠EHG=90°,
∴四边形EFGH是矩形.
b、当AC=BD时,四边形EFGH是菱形.
∵HG= AC,EH= BD,
∴EH=GH,
∴四边形EFGH是菱形;
c、由a与b可得:原四边形ABCD的对角线AC、BD满足AC⊥BD且AC=BD时,四边形EFGH是正方形.
故答案为:a、AC⊥BD,b、AC=BD,c、AC⊥BD且AC=BD.
【题目】某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分、80分、90分、100分,并根据统计数据绘制了如下不完整的统计图表:
乙校成绩统计表
分数/分 | 人数/人 |
70 | 7 |
80 | |
90 | 1 |
100 | 8 |
(1)在图①中,“80分”所在扇形的圆心角度数为________;
(2)请你将图②补充完整;
(3)求乙校成绩的平均分;
(4)经计算知s甲2=135,s乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.