题目内容

如图,∠AOB=90°,OM是∠AOB的平分线,将三角尺的直角顶点P在射线OM上滑动,两直角边分别与OA,OB交于点C和D,证明:PC=PD.
分析:过点P点作PE⊥OA于E,PF⊥OB于F,根据垂直的定义得到∠PEC=∠PFD=90°,由OM是∠AOB的平分线,根据角平分线的性质得到PE=PF,利用四边形内角和定理可得到∠PCE+∠PDO=360°-90°-90°=180°,而∠PDO+∠PDF=180°,则∠PCE=∠PDF,然后根据“AAS”可判断△PCE≌△PDF,根据全等的性质即可得到PC=PD.
解答:证明:过点P点作PE⊥OA于E,PF⊥OB于F,如图,
∴∠PEC=∠PFD=90°,
∵OM是∠AOB的平分线,
∴PE=PF,
∵∠AOB=90°,∠CPD=90°,
∴∠PCE+∠PDO=360°-90°-90°=180°,
而∠PDO+∠PDF=180°,
∴∠PCE=∠PDF,
在△PCE和△PDF中
∠PCE=∠PDF
∠PEC=∠PFD
PE=PF

∴△PCE≌△PDF(AAS),
∴PC=PD.
点评:本题考查了角平分线的性质:角平分线上的点到这个角两边的距离相等.也考查了三角形全等的判定与性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网