题目内容
【题目】如图,一张直角三角形的纸片ABC,两直角边AC=6cm,BC=8cm.现将直角边AC沿直线AD折叠,使它落在斜边AB上,且AC与AE重合,求CD的长.
【答案】CD的长为3cm.
【解析】
试题分析:先根据勾股定理求出AB的长,设CD=xcm,则BD=(8﹣x)cm,再由图形翻折变换的性质可知AE=AC=6cm,DE=CD=xcm,进而可得出BE的长,在Rt△BDE中利用勾股定理即可求出x的值,进而得出CD的长.
解:∵△ABC是直角三角形,AC=6cm,BC=8cm,
∴AB===10cm,
∵△AED是△ACD翻折而成,
∴AE=AC=6cm,
设DE=CD=xcm,∠AED=90°,
∴BE=AB﹣AE=10﹣6=4cm,
在Rt△BDE中,BD2=DE2+BE2,
即(8﹣x)2=42+x2,
解得x=3.
故CD的长为3cm.
练习册系列答案
相关题目