题目内容
【题目】如图,小强和小华共同站在路灯下,小强的身高EF=1.8m,小华的身高MN=1.5m,他们的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且两人相距4.7m,则路灯AD的高度是 .
【答案】4m
【解析】解:设路灯的高度为xm, ∵EF∥AD,
∴△BEF∽△BAD,
∴ ,
即 = ,
解得DF=x﹣1.8,
∵MN∥AD,
∴△CMN∽△CAD,
∴ ,
即 = ,
解得DN=x﹣1.5,
∵两人相距4.7m,
∴FD+ND=4.7,
∴x﹣1.8+x﹣1.5=4.7,
解得x=4,
故答案为:4m.
设路灯的高度为xm,根据相似三角形对应边成比例可得, ,即 = ,可得DF的表达式,再根据相似三角形对应边成比例,同样可得DN的表达式,由于DF+DN=4.7,可得关于x的方程,然后解方程求出x即可.
【题目】下框中是小明对一道题目的解答以及老师的批改.
题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m的空地,其他三侧内墙各保留1m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288m2? |
我的结果也正确!
(1)小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?
(2)请指出小明解答中存在的问题,并补充缺少的过程: 变化一下会怎样…
(3)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,设AB与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.
【题目】某校有学生2100人,在“文明我先行”活动中,开设了“法律、礼仪、环保、感恩、互助”五门校本课程,规定每位学生必须且只能选一门,为了解学生的报名意向,学校随机调查了100名学生,并制成统计表:校本课程意向统计表
课程类型 | 频数 | 频率(%) |
法律 | s | 0.08 |
礼仪 | a | 0.20 |
环保 | 27 | 0.27 |
感恩 | b | m |
互助 | 15 | 0.15 |
合计 | 100 | 1.00 |
请根据统计表的信息,解答下列问题;
(1)在这次调查活动中,学校采取的调查方式是(填写“普查”或“抽样调查”);
(2)a= , b= , m=;
(3)如果要画“校本课程报名意向扇形统计图”,那么“礼仪”类校本课程对应的扇形圆心角的度数是;
(4)请你估计,选择“感恩”类校本课程的学生约有人.