题目内容
【题目】如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是( )
A.1:3
B.1:4
C.1:5
D.1:25
【答案】B
【解析】解:∵DE∥AC,∴△DOE∽△COA,又S△DOE:S△COA=1:25,
∴ = ,
∵DE∥AC,
∴ = = ,
∴ = ,
∴S△BDE与S△CDE的比是1:4,
故选:B.
【考点精析】解答此题的关键在于理解相似三角形的判定与性质的相关知识,掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
练习册系列答案
相关题目